Panasonic ideas for life

RoHS compliant

Space reduction down to footprint of
$5.6 \mathrm{~mm} \times 14 \mathrm{~mm}^{2}$ realized

FEATURES

1. 2 Form C Slim type
$14.0(\mathrm{~L}) \times 9.0(\mathrm{~W}) \times 5.0(\mathrm{H}) .551(\mathrm{~L}) \times$
$.354(\mathrm{~W}) \times .197(\mathrm{H})$
Small header area makes higher density mounting possible
2. Nominal operating power: High sensitivity of 140 mW (Single side stable type)
By using the highly efficient polar magnetic circuit "seesaw balance mechanism", a nominal operating power of 140 mW (minimum operating power of 79 mW) has been achieved.
3. Surge breakdown voltage: 1500 V FCC Part 68
4. Outstanding vibration and shock resistance.
Functional shock resistance: $490 \mathrm{~m} / \mathrm{s}^{2}$
Destructive shock resistance: $980 \mathrm{~m} / \mathrm{s}^{2}$ Functional vibration resistance: 10 to 55 Hz (at double amplitude of 3 mm .118 inch)
Destructive vibration resistance: 10 to 55 Hz (at double amplitude of 5 mm .197 inch)
5. High density mounting possible High-efficiency magnetic circuits ensure low magnetic flux leakag Because characteristics are little changed by proximity mounting, highdensity mounting is possible.
6. The use of gold-clad twin crossbar contacts ensures high contact reliability.
*We also offer a range of products TX/TX-S/TX-D relay with AgPd contacts suitable for use in low level load analog circuits (Max. 10V DC 10 mA).
7. Low thermal electromotive force As well as low power consumption of 140 mW , use of a structure with separate coil and contact sections has reduced thermal electromotive force to the low level of approximately $5 \mu \mathrm{~V}$.
8. Latching types also available
9. Self-clinching terminal also available
10. Sealed construction allows automatic washing.

TYPICAL APPLICATIONS

- Communications
- Measurement equipment
- OA equipment
- Industrial machines

ORDERING INFORMATION

Contact arrangement
2: 2 Form C
Operating function
Nil: Single side stable
L : 1 coil latching
L2: 2 coil latching
Terminal shape
Nil: Standard PC board terminal
H: Self-clinching terminal
Nominal coil voltage (DC)*
$3,4.5,5,6,9,12,24,48 \mathrm{~V}$
Notes: 1. *48 V coil type: Single side stable only
2. In case of 5 V drive circuit, it is recommended to use 4.5 V type relay.

TYPES

1. Standard PC board terminal

Contact arrangement		Single side stable	1 coil latching	2 coil latching
	voltage	Part No.	Part No.	Part No.
2 Form C	3V DC	TN2-3V	TN2-L-3V	TN2-L2-3V
	4.5 V DC	TN2-4.5V	TN2-L-4.5V	TN2-L2-4.5V
	5 V DC	TN2-5V	TN2-L-5V	TN2-L2-5V
	6V DC	TN2-6V	TN2-L-6V	TN2-L2-6V
	9V DC	TN2-9V	TN2-L-9V	TN2-L2-9V
	12 V DC	TN2-12V	TN2-L-12V	TN2-L2-12V
	24V DC	TN2-24V	TN2-L-24V	TN2-L2-24V
	48V DC	TN2-48V	-	-

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

2. Self-clinching terminal

Contact arrangement	Nominal coil voltage	Single side stable	1 coil latching	2 coil latching
		Part No.	Part No.	Part No.
2 Form C	3V DC	TN2-H-3V	TN2-L-H-3V	TN2-L2-H-3V
	4.5 V DC	TN2-H-4.5V	TN2-L-H-4.5V	TN2-L2-H-4.5V
	5V DC	TN2-H-5V	TN2-L-H-5V	TN2-L2-H-5V
	6V DC	TN2-H-6V	TN2-L-H-6V	TN2-L2-H-6V
	9V DC	TN2-H-9V	TN2-L-H-9V	TN2-L2-H-9V
	12 V DC	TN2-H-12V	TN2-L-H-12V	TN2-L2-H-12V
	24V DC	TN2-H-24V	TN2-L-H-24V	TN2-L2-H-24V
	48 V DC	TN2-H-48V	-	-

Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.
Note: Types ("-3" to the end of part No.) designed to withstand strong vibration caused, for example, by the use of terminal cutters, can also be ordered. However, please contact us if you need parts for use in low level load and low thermal power.

RATING

1. Coil data

1) Single side stable

Nominal coil voltage	Pick-up voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	Drop-out voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }} \end{gathered}$	Coil resistance $[\pm 10 \%] \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) }$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$10 \% \mathrm{~V}$ or more of nominal voltage* (Initial)	46.7 mA	64.3Ω	140 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			31.1 mA	145Ω		
5V DC			28.1 mA	178Ω		
6V DC			23.3 mA	257Ω		
9V DC			15.5 mA	579Ω		
12 V DC			11.7 mA	1,028 Ω		
24V DC			8.3 mA	2,880 2	200mW	
48V DC			6.25 mA	7,680 Ω	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

2) 1 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{gathered} \text { Nominal operating } \\ \text { current } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right. \text {) }} \end{gathered}$	$\begin{gathered} \text { Coil resistance } \\ {[\pm 10 \%]\left(\text { at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)} \end{gathered}$	Nominal operating power	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	33.3 mA	90Ω	100 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			22.2 mA	202.5Ω		
5V DC			20 mA	250Ω		
6V DC			16.7 mA	360Ω		
9V DC			11.1 mA	810Ω		
12V DC			8.3 mA	1,440 ${ }^{\text {d }}$		
24V DC			6.3 mA	$3,840 \Omega$	150mW	

3) 2 coil latching

Nominal coil voltage	$\begin{aligned} & \text { Set voltage } \\ & \text { (at } 20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F} \text {) } \end{aligned}$	Reset voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		perating ent $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)	$\begin{array}{r} \text { Coil re } \\ {[\pm 10 \%] \text { (at }} \end{array}$	stance $\left.20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}\right)$	Nomina p	perating er	Max. applied voltage (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)
			Set coil	Reset coil	Set coil	Reset coil	Set coil	Reset coil	
3V DC	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	$75 \% \mathrm{~V}$ or less of nominal voltage* (Initial)	66.7 mA	66.7 mA	45Ω	45Ω	200 mW	200 mW	$150 \% \mathrm{~V}$ of nominal voltage
4.5 V DC			44.4 mA	44.4 mA	101.2Ω	101.2Ω			
5V DC			40 mA	40 mA	125Ω	125Ω			
6V DC			33.3 mA	33.3 mA	180Ω	180Ω			
9V DC			22.2 mA	22.2 mA	405Ω	405Ω			
12V DC			16.7 mA	16.7 mA	720Ω	720Ω			
24V DC			12.5 mA	12.5 mA	1,920	1,920	300 mW	300 mW	$120 \% \mathrm{~V}$ of nominal voltage

*Pulse drive (JIS C 5442-1986)

2. Specifications

Characteristics	Item		Specification
Contact	Arrangement		2 Form C
	Initial contact resistance, max.		Max. $60 \mathrm{~m} \Omega$ (By voltage drop 6 V DC 1A)
	Contact material		Ag+Au clad
Rating	Nominal switching capacity		1 A 30 V DC, $0.5 \mathrm{~A} 125 \mathrm{~V} \mathrm{AC} \mathrm{(resistive} \mathrm{load)}$
	Max. switching power		30 W (DC), $62.5 \mathrm{VA}(\mathrm{AC)}$ (resistive load)
	Max. switching voltage		110 V DC, 125 V AC
	Max. switching current		1 A
	Min. switching capacity (Reference value)*1		$10 \mu \mathrm{~A} 10 \mathrm{mV} \mathrm{DC}$
	Nominal operating power	Single side stable	140 mW (3 to 12 V DC), 200 mW (24V DC), 300 mW (48 V DC)
		1 coil latching	100 mW (3 to 12 V DC), 150 mW (24 V DC)
		2 coil latching	200 mW (3 to 12 V DC), 300 mW (24 V DC)
Electrical characteristics	Insulation resistance (Initial)		Min. $1,000 \mathrm{M} \Omega$ (at 500 V DC) Measurement at same location as "Initial breakdown voltage" section.
	Breakdown voltage (Initial)	Between open contacts	750 Vrms for 1 min . (Detection current: 10 mA)
		Between contact and coil	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
		Between contact sets	$1,000 \mathrm{Vrms}$ for 1 min . (Detection current: 10 mA)
	Surge breakdown voltage (Initial)	Between open contacts	$1,500 \mathrm{~V}(10 \times 160 \mu \mathrm{~s})$ (FCC Part 68)
	Temperature rise (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. $50^{\circ} \mathrm{C}$ (By resistive method, nominal coil voltage applied to the coil; contact carrying current: 1A.)
	Operate time [Set time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.)
	Release time [Reset time] (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)		Max. 3 ms [Max. 3 ms] (Nominal coil voltage applied to the coil, excluding contact bounce time.) (without diode)
Mechanical characteristics	Shock resistance	Functional	Min. $490 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$.)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (Half-wave pulse of sine wave: 6 ms .)
	Vibration resistance	Functional	10 to 55 Hz at double amplitude of 3 mm (Detection time: $10 \mu \mathrm{~s}$.)
		Destructive	10 to 55 Hz at double amplitude of 5 mm
Expected life	Mechanical		Min. 10^{8} (at 180 cpm)
	Electrical		Min. 2×10^{5} (1 A 30 V DC resistive), Min. 10^{5} (0.5 A $125 \mathrm{~V} \mathrm{AC} \mathrm{resistive)} \mathrm{(at} 20 \mathrm{cpm}$)
Conditions	Conditions for operation, transport and storage*2		Ambient temperature: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$; Humidity: 5 to 85% R.H. (Not freezing and condensing at low temperature)
	Max. operating speed (at rated load)		20 cpm
Unit weight			Approx. 1.5 g .053 oz

Notes: *1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (TX/TX-S/TX-D relay AgPd contact type are available for low level load switching [10V DC, 10mA max. level])
*2 Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.

REFERENCE DATA

1. Maximum switching capacity

2. Electrical life (DC load)

Tested sample: TN2-12V, 10 pcs.
Condition: 1 A 30 V DC resistive load, 20 cpm

6. Set/reset time characteristics Tested sample: TN2-L2-12V, 5 pcs.

8-(2). Malfunctional shock (latching)
Tested sample: TN2-L2-12V, 6 pcs.

2. Life curve

3. Mechanical life

Tested sample: TN2-12V, 10 pcs.

5. Coil temperature rise

Tested sample: TN2-12V
Point measured: Inside the coil
Ambient temperature: Room temperature (25° to $\left.26^{\circ} \mathrm{C}\right), 70^{\circ} \mathrm{C}\left(77^{\circ}\right.$ to $\left.79^{\circ} \mathrm{F}\right), 158^{\circ} \mathrm{F}$

8-(1). Malfunctional shock (single side stable) Tested sample: TN2-12V, 6 pcs

9-(1). Influence of adjacent mountin

\longrightarrow Inter-relay distance ℓ, mm inch

9-(2). Influence of adjacent mountin

10. Actual load test (35 mA 48 V DC wire spring relay load)

Tested sample: TN2-12V, 5 pcs.

Change of pick-up and drop-out voltage

Change of contact resistance

DIMENSIONS (mm inch)

CAD Data

External dimensions
Standard PC board terminal

PC board pattern (Bottom view)

Self-clinching terminal

General tolerance: $\pm 0.3 \pm .012$

Tolerance: $\pm 0.1 \pm .004$

Schematic (Bottom view)

Single side stable	

(Deenergized condition)

1-coil latching

(Reset condition)

(Reset condition)

NOTES

1. Packing style

The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure bel w.

2. Automatic insertion

To maintain the internal function of the relay, the chucking pressure should not exceed the values below.
Chucking pressure in the direction A: $9.8 \mathrm{~N}\{1 \mathrm{kgf}\}$ or less
Chucking pressure in the direction B: 9.8 N \{1 kgf\} or less

Chucking pressure in the direction C : $4.9 \mathrm{~N}\{500 \mathrm{gf}\}$ or less

Please chuck the \square portion.
Avoid chucking the center of the relay. In addition, excessive chucking pressure to the pinpoint of the relay should be avoided.

For general cautions for use, please refer to the "Cautions for use of Signal Relays" or "General Application Guidelines".

